Estudio in vitro de la relación entre resistencia de unión a esmalte dental y microfiltración en resinas compuestas fotopolimerizables
PDF
PDF (Inglés)
HTML

Palabras clave

microtracción, microfiltración, resinas compuestas.

Cómo citar

Estudio in vitro de la relación entre resistencia de unión a esmalte dental y microfiltración en resinas compuestas fotopolimerizables. (2020). Odontoestomatología, 22(35), 38-49. https://doi.org/10.22592/ode2020n35a6

Resumen

Objetivos. Evaluar y comparar la relación entre la resistencia de unión inmediata a esmalte
y microfiltración de dos sistemas restauradores a base de resina compuesta. Métodos. 40
terceros molares se dividieron aleatoriamente en dos grupos: 20 molares restaurados utilizando
el sistema Adper Single bond 2 + Filtek Z250 XT (3M ESPE; ST PAUL, MN, USA);
y 20 molares restaurados con el sistema Tetric N Bond + Tetric N Ceram (Ivoclar Vivadent;
Schaan, Liechtenstein). La mitad de los dientes de cada grupo se utilizaron para un ensayo
de microtracción, mientras que la otra mitad fueron utilizados para un ensayo de microfiltración
(n = 10).
Resultados. Las medias y el desvío padrón de la resistencia de unión a microtracción fueron
de 27.93 (±9.55) para Adper Single bond 2 + Filtek Z250 XT MPa y 33.12 (±8.18) MPa
para Tetric N Bond + Tetric N Ceram (p = 0,049). En cuanto a los valores de microfiltración,
no hubo diferencias estadísticamente significativas entre los grupos (p = 0,478). No
fue observada una correlación significativa entre la resistencia de unión a la microtracción y
la microfiltración (R2= 0.0909; p = 0.196).
Conclusiones. No se encontró una relación entre los valores de resistencia de unión y el
grado de microfiltración.

PDF
PDF (Inglés)
HTML

Referencias

1. Correa MB, Peres MA, Peres KG, Horta BL,
Barros AD, Demarco FF. Amalgam or composite
resin? Factors influencing the choice of restorative
material. J Dent. 2012;
2. Demarco FF, Corrêa MB, Cenci MS, Moraes
RR, Opdam NJM. Longevity of posterior composite
restorations: not only a matter of materials.
Dent Mater. 2012; 28 (1): 87–101.
3. Chang C-H, Fang C-L, Hsu J-T, Chen. Chang-
Pen. Cavity Dimension Effect on MOD Dental
Restoration Filled with Resin Composite – A
Finite Element Interface Stress Evaluation. J
Med Biol Eng. 2004; 24 (4).
4. Ishikiriama SK, De Oliveira GU, Maenosono
RM, Wang L, Duarte MAH, Mondelli RFL.
Wear and surface roughness of silorane composites
after pH cycling and toothbrushing abrasion.
Am J Dent. 2014; 27 (4): 195–8.
5. Mjör IA. Problems and benefits associated with
restorative materials: side-effects and long-term
cost. Adv Dent Res. 1992; 6 (1): 7–16.
6. Mjör IA, Jokstad A. Five-year study of Class II
restorations in permanent teeth using amalgam,
glass polyalkenoate (ionomer) cerment and resin-
based composite materials. J Dent. 1993;21
(6): 338–43.
7. Mjör IA. The reasons for replacement and the
age of failed restorations in general dental practice.
Acta Odontol Scand. 1997;55 (1): 58–63.
8. Braga SRM, Vasconcelos BT, Macedo MR de
P, Martins VRG, Sobral MAP. Reasons for placement
and replacement of direct restorative
materials in Brazil. Quintessence Int. 2007; 38
(4): e189-94.
9. Opdam NJ, van de Sande FH, Bronkhorst E,
Cenci MS, Bottenberg P, Pallesen U, Gaengler
P, Lindberg A, Huysmans MC, van Dijken JW.
Longevity of Posterior Composite Restorations.
J Dent Res. 2014; 93 (10): 943–9.
10. Matos AB, Trevelin LT, Silva BTF da, Francisconi-
dos-rios LF, Siriani LK, CArdoso MV.
Bonding efficiency and durability: current possibilities.
Braz Oral Res. 2017; 31(suppl 1).
11. Hahnel S, Henrich A, Bürgers R, Handel G,
Rosentritt M. Investigation of mechanical properties
of modern dental composites after artificial
aging for one year. Oper Dent. 2010; 35
(4): 412–9.
12. Amano S, Yamamoto A, Tsubota K, Rikuta
A, Miyazaki M, Platt JA, Moore BK. Effect of
Thermal Cycling on Enamel Bond Strength
of Single-step Self-etch Systems. Oper Dent.
2006; 31(5): 616–22.
13. Rossomando KJ, Wendt SL. Thermocycling
and dwell times in microleakage evaluation for
bonded restorations. Dent Mater. 1995;11 (1):
47–51.
14. ISO/TS 11405:2015(en), Dentistry — Testing
of adhesion to tooth structure.
15. Van Meerbeek B, De Munck J, Yoshida Y,
Inoue S, Vargas M, Vijay P, Van Landuyt K,
Lambrechts P, Vanherle G. Adhesion to enamel
and dentin: current status and future challenges.
Oper Dent. 2003;
16. Mahn E, Rousson V, Heintze S. Meta-Analysis
of the Influence of Bonding Parameters on the
Clinical Outcome of Tooth-colored Cervical
Restorations. J Adhes Dent. 2015;17 (5): 391–
403.
17. van Dijken JW V, Pallesen U. Long-term dentin
retention of etch-and-rinse and self-etch
adhesives and a resin-modified glass ionomer
cement in non-carious cervical lesions. Dent
Mater. 2008;24 (7): 915–22.
18. Perdigão J. New Developments in Dental Adhesion.
Dent Clin North Am. 2007;51 (2):
333–57.
19. Cardoso MV, de Almeida Neves A, Mine A,
Coutinho E, Van Landuyt K, De Munck J, Van
Meerbeek B.Current aspects on bonding effectiveness
and stability in adhesive dentistry. Aust
Dent J. 2011;56 Suppl 1:31–44.
20. Wahab FK, Shaini FJ, Morgano SM. The effect
of thermocycling on microleakage of several
commercially available composite Class V restorations
in vitro. J Prosthet Dent [Internet].
2003; 90 (2): 168–74. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/12886210
21. Pazinatto FB, Campos BB, Costa LC, Atta MT.
Effect of the number of thermocycles on microleakage
of resin composite restorations. Pesqui
Odontol Bras. 2003; 17 (4): 337–41.
22. Güçlü ZA, Dönmez N, Hurt AP, Coleman NJ.
Characterisation and microleakage of a new hydrophilic
fissure sealant-ultraseal XT®hydroTM. J
Appl Oral Sci. 2016;24 (4): 344–51.
23. Okida RC, Martins TM, Briso ALF. In vitro
evaluation of marginal leakage in bonded restorations,
with mechanical or chemical-mechanical
(Carisolv) removal of carious tissue. Braz
Oral Res. 2007; 21 (2): 176–81.
24. Bedran-de-Castro AKB, Pereira PNR, Pimenta
LAF, Thompson JY. Effect of thermal and
mechanical load cycling on microtensile bond
strength of a total-etch adhesive system. Oper
Dent. 29 (2): 150–6.
25. Shadman N, Farzin Ebrahimi S, Abrishami A,
Sattari H. Shear bond strength of three adhesive
systems to enamel and dentin of permanent
teeth. J Dent Med. 2012; 25 (3): 202–10.
26. Ivoclar-Vivadent. Tetric® N-Collection Un
completo sistema restaurativo nano-optimizado.
27. De Nordenflycht D, Kaplan M, Montecinos V,
Báez A. Resistencia microtraccional de capa de
adhesivo contaminada con sangre. Rev Clínica
Periodoncia, Implantol y Rehabil Oral. 2013; 6
(3): 118–22.
28. Ateyah NZ, Elhejazi AA. Shear bond strengths
and microleakage of four types of dentin adhesive
materials. J Contemp Dent Pract. 2004; 5
(1): 63–73.
29. Fortin D, Swift EJ, Denehy GE, Reinhardt JW.
Bond strength and microleakage of current dentin
adhesives. Dent Mater. 1994;10 (4): 253–8.
30. Abdelrahman M, Abdelrahman MH, Mahmoud
EM, Ghoneim MM, Kammar AA.
Comparative study of microleakage and shear
bond strength between bulk fill and self adhesive
flowable composite resins. Alexandria Dent
J. 2016; 41 (3): 322–7.
31. Chowdary Mandava R, Gurunathan D, Ramakrishnan
M, Subramanian E. Comparison
of Microleakage and Shear Bond Strength
(SBS) of Dyad Flow and Tetric Flow in Primary
Molars: An In-vitro Study. J Clin Diagnostic
Res. 2018; 12 (10).
32. Heintze SD. Clinical relevance of tests on bond
strength, microleakage and marginal adaptation.
Dent Mater. 2013; 29 (1): 59–84.
33. Gale MS, Darvell BW. Thermal cycling procedures
for laboratory testing of dental restorations.
J Dent. 1999; 27 (2): 89–99.
34. Ilie N, Hilton TJ, Heintze SD, Hickel R, Watts
DC, Silikas N, Stansbury JW, Cadenaro M,
Ferracane JL.Academy of Dental Materials guidance—
Resin composites: Part I—Mechanical
properties. Dent Mater. 2017; 33 (8): 880–94.
35. Nedeljkovic I, Teughels W, De Munck J, Van
Meerbeek B, Van Landuyt KL. Is secondary caries
with composites a material-based problem?
Dent Mater. 2015; 31 (11):e247–77.
36. Demarco FF, Collares K, Correa MB, Cenci
MS, Moraes RR de, Opdam NJ. Should my
composite restorations last forever? Why are
they failing? Braz Oral Res. 2017;31 (suppl 1).
37. van de Sande FH, Opdam NJ, Rodolpho
PADR, Correa MB, Demarco FF, Cenci MS.
Patient risk factors’ influence on survival of
posterior composites. J Dent Res. 2013; 92 (7
Suppl): 78S-83S.
38. Hamburger JT, Opdam NJM, Bronkhorst EM,
Huysmans MCDNJM. Indirect restorations for
severe tooth wear: fracture risk and layer thickness.
J Dent. 2014; 42 (4): 413–8.
39. Leloup G, D’Hoore W, Bouter D, Degrange M,
Vreven J. Meta-analytical review of factors involved
in dentin adherence. J Dent Res. 2001;
80 (7): 1605–14.
40. De Munck J, Mine A, Poitevin A, Van Ende
A, Cardoso MV, Van Landuyt KL, Peumans M,
Van Meerbeek B. Meta-analytical Review of Parameters Involved in Dentin Bonding. J Dent
Res. 2012; 91 (4): 351–7.
41. Van Meerbeek B, Peumans M, Poitevin A,
Mine A, Van Ende A, Neves A, De Munck J.
Relationship between bond-strength tests and
clinical outcomes. Dent Mater. 2010; 26 (2):
e100–21.
42. Laske M, Opdam NJM, Bronkhorst EM, Braspenning
JCC, Huysmans MCDNJM. Longevity
of direct restorations in Dutch dental practices.
Descriptive study out of a practice based
research network. J Dent. 2016; 46: 12–7.
43. Heaven TJ, Gordan VV, Litaker MS, Fellows
JL, Brad Rindal D, Firestone AR, Gilbert
GH; National Dental PBRN Collaborative
Group. Agreement among dentists’ restorative
treatment planning thresholds for primary
occlusal caries, primary proximal caries, and
existing restorations: Findings from The National
Dental Practice-Based Research Network. J
Dent. 2013;41 (8): 718–25.
44. Lucarotti PSK, Holder RL, Burke FJT. Outcome
of direct restorations placed within the general
dental services in England and Wales (Part
1): variation by type of restoration and re-intervention.
J Dent. 2005;33 (10): 805–15.