Efectos del xilitol en el crecimiento bacteriano frente a Streptococcus sanguinis: Estudio in vitro
ROTCIV ANGINOVI APAZA
Universidad Nacional del Altiplano, Facultad Ciencias de la Salud. Escuela Profesional de Odontología. Puno, Perú.
https://orcid.org/0000-0003-4703-2301
SHANGHAINESA ASILLO CHOQUEHUANCA
TANIA CAROLA PADILLA CÁCERES
VILMA MAMANI CORI
PAULA OLENSKA CATACORA PADILLA
FLOR DE BRUSELA APAZA
PDF
PDF (English)
HTML

Palabras clave

xilitol
Streptococcus sanguinis
crecimiento bacteriano

Cómo citar

APAZA, R., CHOQUEHUANCA, S., PADILLA CÁCERES, T., MAMANI CORI, V., CATACORA PADILLA, P., & APAZA, F. D. B. (2022). Efectos del xilitol en el crecimiento bacteriano frente a Streptococcus sanguinis: Estudio in vitro. Odontoestomatología, 24(40), 1-14. https://doi.org/10.22592/ode2022n40e226
PDF
PDF (English)
HTML

Resumen

Streptococcus sanguinis forma parte del biofilm bucal, tiene función decisoria en el desarrollo de las enfermedades bucales prevalentes y a nivel sistémico actúa como patógeno oportunista. 

Objetivo: Evaluar in vitro los efectos del xilitol en el crecimiento bacteriano frente a Streptococcus sanguinis (ATCC 10556). 

Métodos: la muestra del estudio fue distribuida en 6 grupos: 4 grupos experimentales (xilitol 1M; 0,75M; 0,50M y 0,25M), un control negativo (agua destilada) y un control positivo (clorhexidina); el análisis estadístico se hizo mediante el software estadístico Infostat y se empleó las pruebas t–Student, ANOVA y Tukey para contrastar la hipótesis. 

Resultados: diferentes concentraciones de xilitol (0,25M; 0,50M; 0,75M y 1M) causaron un halo de inhibición entre 9,89 - 12,89 mm (24 horas) y 10,85 - 13,45 mm (48 horas). 

Conclusiones: diferentes concentraciones de xilitol inhiben el crecimiento bacteriano del Streptococcus sanguinis, este efecto inhibitorio aumenta a mayor concentración y tiempo de exposición.

PDF
PDF (English)
HTML

Citas

1.Hasan NA, Young BA, Minard-Smith AT, Saeed K, Li H, Heizer EM, McMillan NJ, Isom R, Abdullah AS, Bornman DM, Faith SA,
Choi SY, Dickens ML, Cebula TA, Colwell RR. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS OnE [Internet] 2014 [cited 2021 Jun 28];9(5):97699. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097699
2.Margarita S, Quintana C, Sjostrom IPD, Arias IID, Marlene IG, Baldeón M. Microbiota de los ecosistemas de la cavidad bucal Microbiota of oral cavity ecosystems. Rev Cubana Estomatol 2017;54(1):84–99.
3.Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol [Internet] 2018;13(8):915–32. Disponible en: https://www.futuremedicine.com/doi/10.2217/fmb-2018-0043
4.Hashizume-Takizawa T, Yamaguchi Y, Kobayashi R, Shinozaki-Kuwahara N, Saito M, Kurita-Ochiai T. Oral challenge with Streptococcus sanguinis induces aortic inflammation and accelerates atherosclerosis in spontaneously hyperlipidemic mice. Biochem. Biophys. Res. Commun. 2019;520(3):507–13.
5.Díaz-Garrido N, Lozano CP, Kreth J, Giacaman RA. Competition and Caries on Enamel of a Dual-Species Biofilm Model with Streptococcus mutans and Streptococcus sanguinis. Appl. Environ. Microbiol. [Internet] 2020 [cited 2021 Jul 3];86(21). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580551/
6. Oda Y, Miura T, Mori G, Sasaki H, Ito T, Yoshinari M, Yajima Y. Adhesion of streptococci to titanium and zirconia. PLoS One [Internet] 2020 [cited 2021 Jul 27];15(6):e0234524. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314031/
7. Mark-Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. PNAS [Internet]. 2015 [cited 2022 Sep 18];113(6):e791–800. Disponible en: https://www.pnas.org/doi/pdf/10.1073/pnas.1522149113
8. Lozano CP, Díaz-Garrido N, Kreth J, Giacaman RA. Streptococcus mutans and Streptococcus sanguinis Expression of Competition-Related Genes, under Sucrose. Caries Res. [Internet] 2019 [cited 2021 Jul 3];53(2):194–203. Disponible en: https://www.karger.com/Article/FullText/490950
9. Giacaman RA, Torres S, Gómez Y, Muñoz-Sandoval C, Kreth J. Correlation of Streptococcus mutans and Streptococcus sanguinis colonization and ex vivo hydrogen peroxide production in carious lesion-free and high caries adults. Arch. Oral Biol. [Internet] 2015 [cited 2021 Jul 3];60(1):154–9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25455129/
10. Puccio T, Kunka KS, Zhu B, Xu P, Kitten T. Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen Streptococcus sanguinis. Front. Microbiol. 2020;11.
11. Misra S, Raghuwanshi S, Gupta P, Saxena RK. Examine growth inhibition pattern and lactic acid production in Streptococcus mutans using different concentrations of xylitol produced from Candida tropicalis by fermentation. Anaerobe 2012;18(3):273–9.
12. Cobos Ortega C, Valenzuela Espinoza E, Ángel Araiza M. Influencia de un enjuague a base de fluoruro y xilitol en la remineralización in vitro del esmalte en dientes temporales. Rev. Odont. Mex. 2013;17(4):204–9.
13. Checalla-Collatupa JL, Sánchez-Tito MA. Caracterización Química y Actividad Antibacteriana in vitro de un Extracto Etanólico de Propóleo Peruano Frente a Streptococcus mutans. Int. J. Odontostomat. 2021;15(1):145–51.
14. Makinen KK, Bennett CA, Hujoel PP, Isokangas PJ, Isotupa KP, H.R. Pape J, Makinen P. Xylitol Chewing Gums and Caries Rates: A 40-month Cohort Study: J. Dent. Res. [Internet] 1995 [cited 2021 Jul 11];74(12):1904–13. Disponible en: https://journals.sagepub.com/doi/10.1177/00220345950740121501?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed
15. Gajdács M, Spengler G, Urbán E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics [Internet] 2017 [cited 2021 Jul 27];6(4). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745468/
16. Hu D, Gong J, He B, Chen Z, Li M. Surface properties and Streptococcus mutans - Streptococcus sanguinis adhesion of fluorotic enamel. Arch. Oral Biol. 2021;121:104970.
17. Wen ZT, Yates D, Ahn SJ, Burne RA. Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC Microbiol. [Internet] 2010 [cited 2021 Jul 2];10(1):111. Disponible en: http://www.biomedcentral.com/1471-2180/10/111
18. de la Cruz SB, Albites U. Efectividad de las pastas dentales en la reducción del recuento de Streptococcos mutans en niños de 5 años de edad. Odontol Pediatr [Internet] 2021 [cited 2021 Jul 3];19(2):33–9. Disponible en: http://www.op.spo.com.pe/index.php/odontologiapediatrica/article/view/133
19. Escalante-Medina RP, Asmat-Abanto AS, Ruiz-Barrueto MA. Efecto antibacteriano de una pasta dental con xilitol sobre Streptococcus mutans en saliva de gestantes. Rev Cubana Estomatol [Internet] 2019;56(4):1–11. Disponible en: http://www.revestomatologia.sld.cu/index.php/est/article/view/1825
20. Loimaranta V, Mazurel D, Deng D, Söderling E. Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans. BMC Microbiol. [Internet] 2020 [cited 2021 Jul 10];20(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325245/
21. Saheer, Parmar P, Majid SA, Bashyam M, Kousalya PS, Marriette TM. Effect of sugar-free chewing gum on plaque and gingivitis among 14–15-year-old school children: A randomized controlled trial. Indian J Dent Res [Internet] 2019 [cited 2021 Jul 10];30(1):61. Disponible en: https://www.ijdr.in/article.asp?issn=0970-9290;year=2019;volume=30;issue=1;spage=61;epage=66;aulast=Saheer
22. Ghezelbash GR, Nahvi I, Rabbani M. Comparative inhibitory effect of xylitol and erythritol on the growth and biofilm formation of oral Streptococci. Afr. J. Microbiol. Res. 2012;6(20):4404–8.
23. Sahni PS, Gillespie JM, Botto RW, Otsuka AS. Pruebas in vitro de xilitol como agente anticariogénico. Gen Dent [Internet] 2002 [cited 2021 Jul 24];50(4):340–3. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12640850/
24. Bahador A, Lesan S, Kashi N. Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial. Iran J Microbiol [Internet] 2012 [cited 2021 Jul 24];4(2):75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22973473/
25. Marttinen AM, Ruas-Madiedo P, Hidalgo-Cantabrana C, Saari MA, Ihalin RA, Söderling EM. Effects of Xylitol on Xylitol-Sensitive Versus Xylitol-Resistant Streptococcus mutans Strains in a Three-Species in Vitro Biofilm. Curr Microbiol [Internet]. 2012 Sep 30 [cited 2022 Oct 22];65(3):237–43. Disponible en: https://link.springer.com/article/10.1007/s00284-012-0151-2

26. Nasution M, Simatupang Y, Dennis D. Effectiveness of star fruit leaf extract on the growth of streptococcus sanguinis: An in vitro study. World J. Dent. 2020;11(3):196–200.
27. Lyu X, Wang L, Shui Y, Jiang Q, Chen L, Yang W, He X, Zeng J, Li Y. Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii. Arch. Oral Biol. 2021;125:105107.
28. Berniyanti T, Mahmiyah E. Microbiological studies on the production of antimicrobial agent by Saponin aloe vera linn against Streptococcus sanguinis. Res. J. Microbiol. 2015;10(10):486–93.
29. Oda Y, Miura T, Hirano T, Furuya Y, Ito T, Yoshinari M, Yajima Y. Effects of 2% sodium fluoride solution on the prevention of streptococcal adhesion to titanium and zirconia surfaces. Sci. Rep. [Internet] 2021 [cited 2021 Jun 19];11:4498. Disponible en: https://doi.org/10.1038/s41598-021-84096-x
30. Cheng X, Liu J, Li J, Zhou X, Wang L, Liu J, Xu X. Comparative effect of a stannous fluoride toothpaste and a sodium fluoride toothpaste on a multispecies biofilm. Arch. Oral Biol. 2017;74:5–11.